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The number of triple-phase relationships interrelating a set of phases, Q, may greatly exceed the number 
of unknown phases, M. Consequently it is usually possible to find a linearly independent set of M 
triple-phase invariants and the remaining Q-M may be expressed as linear combinations of these. From 
the expected distribution in the values of all the invariants and the interrelationships between them it is 
possible to find values for the independent set of relationships which are closer to their true values than 
zero, the ab initio expection value of each of them. Ways of using the calculated values of the invariants 
are described and results are given for various trial structures. Possible improvements in the invariant- 
determining process are discussed. 

Introduction 

The symbolic-addition and multiple-solution methods, 
which are widely used to solve crystal structures at the 
present time, make use of the triple-phase relationship 

S h l  , h2 = (flh 1 ~- (flh 2 + {0h3 ~ 0 mod (2n) (1) 

where hl+h2+h3---0 and ~ implies 'is distributed 
about'. The distribution of S has been given by Coch- 
ran (1955) and the variance of the distribution was 
given in analytical and graphical form by Karle & 
Karle (1966). 

The usual methods of using the S's, the triple-phase 
invariants, assume initially that each of them has the 
value zero. This assumption eventually introduces in- 
consistencies, where two relationships would give dif- 
ferent indications for a new phase, and an averaging 
formula, the tangent formula, 

[ E h , E h _ h ,  [ sin ((/9 h,  "Jr- ( /gh_h , )  

h '  , ( 2 )  
tan (Oh= ~ IEh,Eh-h,I COS (~0h, + ~0h-h') 

h '  

is then brought into play to combine the differing in- 
dications. 

However, the values of M unknown ~0's could be 
determined from a properly selected set of M S's if the 
values of these S's were known precisely. Starting with 
some known phases, which could include those used 
to fix the origin and enantiomorph and also ~1 phases, 
it requires one phase relationship containing two 
known and one unknown phase, to find each unknown 
phase from 

(fib 1 ~--- S h l  ' 112 - -  (flh 2 - -  (fib 3 . (3) 

In this way M unknown phases may be found in 
terms of M S's. Of course this would not normally 

give a solution of sufficient accuracy if each S was put 
equal to zero, its most likely value ab initio. 

The general form of the final equation giving the 
values of (0 is 

M 

~o,= ~ a,.,s, + b~ (4) 
r = l  

where i may take values from 1 to M, the a's are in- 
teger coefficients and the b's arise because of the known 
phases and any translational symmetry associated with 
the space group. 

Interdependence of the triple-phase relationships 

If a sufficiently large number of unknown phases, M, 
is considered then the number of triple-phase rela- 
tionships linking them, Q, will be much greater than 
M. Typically, with M = 2 5 0  one may have Q of order 
4000 or so. From what has been said previously it is 
possible to express the (o's as linear combinations of a 
linearly independent set of M of the S's. Clearly, by 
substitution of expressions such as (4) for the ~0's in 
the remaining ( Q - M )  triple-phase relationships the 
values of these S's can be expressed in terms of the 
linearly independent set of M. These latter clearly form 
a basis in terms of which all S's derived from the 
specified set of ~0's may be expressed. 

We may write 
M 

S t=~ae . , S ,+b ,  (5) 
r = l  

where t takes the values from 1 to Q. For t < M, b~---0 
and at., = fit., the Kronecker delta. 

It should be noted that equations (5) are exact equa- 
tions and the 'quadrupole' described by Viterbo & 
Woolfson (1973) is a special type of such relationship 
involving a total of only four S's. 
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It is interesting to insert into equations (5) the values 
zero for the basis set of S's. This gives the constants, 
b, as the indicated values for the complete set of S's 
and in Fig. 1 (a) is shown a typical distribution of 2000 
values of S which might result in such a case. Such a 
distribution is unrealistic and if the values of S for the 
complete data set were known they might be expected 
to give a distribution pattern as shown in Fig. l(b). 

Probable values of the basis invariants 

We have used a knowledge of the expected distribution 
of values of the complete set of S's  as a means of find- 
ing improved values for the basis set. We define a 
function 

(2 
q(Sl, S z , . . .  SM)= ~ IE3I, cos (&) (6) 

r = l  

where IEalr is the product of the magnitudes of the 
three E 's  associated with the r th  phase relationship 
and each S on the right-hand side may be expressed 
in terms of the basis as in expression (5). We attempt 
to refine the values of the basic set of S's  by maximiz- 
ing the value of r/starting with each value of S equal 
to zero. This maximization will tend to change the dis- 
tribution of the total set of S's  away from the starting 
point, as illustrated in Fig. l(a), towards the distribu- 
tion shown in Fig. l(b). 

The refinement procedure 

Various methods of maximizing the value of r /have  
been tried. It turns out that the simplest method, the 
parameter-shift method, is also the most efficient. In 
this method the values of S are considered singly and 
the value of 1/is computed with the S under investiga- 
tion changed by k& where & is a selected quantity and 
k is varied in steps of unity from - 5  to + 5 (Bhuiya 
& Stanley, 1963). The value of S is then changed to 
S + k , f l  where k,, is the value of k which gave a max- 
imum value of r/. This is done for all the S's in turn 
and the whole process is repeated in cyclic fashion. As 
the refinement proceeds it is necessary from time to 
time to reduce the value of & until the point is reached 
where the shifts are too small to be significant. For 
example in the first cycle the step may be 18 ° and 
reduce to 1 ° by the ninth or tenth cycle. 

Tests have been made of this idea with a number of 
known trial structures. In every case the finally deter- 
mined values of the structure invariants were better, 
in a statistical sense, than the usual assumption that 
each of them was equal to zero. 

For example we took as a test case the photolysis 
product of Karle, Karle & Estlin (1967). The strongest 
2000 ~.z relationships were selected linking 179 of the 
largest E's. Seven of the phases were taken as known 
- four which fixed the origin and enantiomorph and 
three others which the CONVERGENCE routine in 
M U L T A N  identified as necessary to include in the 

starting set. A basis of 172 invariants was selected 
whose mean deviation from zero was 37.9 ° . After par- 
ameter-shift refinement the mean deviation of the cal- 
culated values of these invariants from their true values 
was 31.9 ° . The corresponding quantities for the com- 
plete set of 2000 relationships were 43.0 and 34.3 ° . It 
must be stressed however that this improvement is an 
overall one - some individual invariants may actually 
get worse as a result of the refinement procedure. 

This result is typical of the general run of results 
using this technique. There is a reduction of between 
15 and 20 % in the mean error of invariants in the basis 
set and a somewhat smaller percentage reduction for 
the total set of invariants. 

This reduction should not be underestimated. If the 
mean error is changed by a factor e then the variance 
is changed by a factor ~z. From the work of Karle & 
Karle (1966) it can be seen that over the range of in- 
terest the variance of the phase relationships varies ap- 
proximately as ~c-~ where 

K=2N-X/2IE3I . (7) 

Thus to change the average variance by a factor 0~ 2 r e -  

quires N, the number of atoms per unit-cell, to change 
by a factor e4. Hence the mean error of invariants is 
reduced by 15 % by reducing the number of atoms in 
the cell to about 0.5 of their original number. A reduc- 
tion in the mean error of invariants by 15 % may thus 
be regarded, as far as direct methods are concerned, 
as equivalent to handling data corresponding to a 
much simpler structure. 

Using the invariants 

From the detei'mined values of the basis invariants one 
may, by inverting the set of equations of type (1), find 
corresponding values for the phases. It could be ar- 
gued that these phases have been determined from all 
the invariants, albeit indirectly, and since the invariants 
have been analysed as a complete set the pitfall of con- 
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Fig. 1. (a) The distribution of values of a complete set of 
triple-phase invariants when each of the basic set is set at 
zero. (b) The expected distribution of values of the triple- 
phase invariants. 
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sidering the invariants in a chain process, where one 
step badly in error may invalidate all subsequent phase 
determination, will have been circumvented. Our ex- 
perience has been rather mixed up to the present time 
and it appears that generally one does get better phases 
from the calculated invariants but occasionally better 
phases are obtained by a chain process using the tan- 
gent formula. In Table 1 some results are summarized. 

Table 1. Comparison of phase determination.from cal- 
culated values of structure &variants, Sc,lc, with those 

from use of the tangent formula (T.F.) 
Number 

of Total Mean Mean 
unknown number error from error 

Structure phases of ~2 S¢a|¢ from T.F. 
Photolysis 

product 201 2000 56"6 83"3 
Estrone 279 2000 45.2 19.5 
Sulphur 18 179 2000 15.4 65.8 
Cortisone 300 2000 22.4 87.7 

We feel convinced that the technique we are using in 
processing the total set of interdependent invariants is 
giving potentially useful information. What we are not 
convinced about, however, is that we are using the best 
technique to find the invariants or that we are using 
this information in the best possible way to solve struc- 
tures and investigation in this area is continuing. 

Possible extensions of the method 

One drawback to the procedure we are using is that 
the correct values of the invariants do not give a max- 
imum of r/ - neither an absolute maximum nor, in- 
deed, even a local maximum. This we have checked by 
starting the refinement process with all correct values 
of the invariants and they have moved well away from 
the starting point. This is shown in Table 2 which cor- 
responds to a situation with 92 phases and 410 in- 
variants. This trial was made with unit weight for each 
invariant, rather than ]E3[ as in equation (6), but the 
general quality of the result is not influenced greatly 
by the weighting scheme. 

Table 2. The refinement of  phases starting from (I) all 
invariants initially equal to their correct values and (II) 

all invariants initially equal to zero 

(I) ( I I )  

Cycle r/ IASI r/ IASI 
Start 219"4 0"0 ° 110'8 30.9 ° 

1 309"2 10.8 292.6 30"0 
2 313"3 15"0 297"5 29"3 
3 315"1 16.1 307"6 28.3 
4 317"5 17"3 312"6 27"9 
5 319.9 18"5 316"9 27"2 
6 321.7 19"5 319"7 27-0 ' 
7 323"2 20"6 321 "8 26"8 
8 324" 1 21 "3 323"2 26"6 
9 324"9 21 "9 324"2 26"5 

10 325"5 22"0 324"2 26"5 

Starting with each S equal to zero the value of r/ 
was 110.8, i.e. the average value of a cosine invariant 
was 0.27 (110.8/410). The mean error in S at this stage 
was 30-9 ° . After ten cycles of refinement the average 
cosine invariant equals 0.79 and the mean error in S 
has fallen to 26.5 ° . 

With each S given its true value initially the aver- 
age cosine is 0.53 and ten stages of refinement change 
this to 0.79 with a mean error in S of 22.0 °. The sets 
of final phases from the two starting points differ by 
an average of 18.5 ° , i.e. they are almost as different 
from each other as from the correct set of phases. 

Clearly what is required is a function for maximiza- 
tion (or minimization) for which the correct set of 
phases is an extremum and preferably an extremum of 
greatest magnitude. Some ideas for better functions 
follow. 

Any relationships between phases may be used in 
the same way as, and added to, the triple-phase rela- 
tionship to strengthen the determination of the basis 
set. A relationship offering this possibility is the 'nega- 
tive quartet' described by Hauptman (1974). This in- 
volves a set of four phases, the vector sum of whose 
indices is zero and the relationship may be expressed as 

~Thl Jl- ~7h2 -t" ~7h3 -]- ~7h4 ~ 7/7 (8) 

when IEh,l,lEh21,1Eh3l,lEh, I are all large and [Eh,+hzl, 
IEh,+h31 and IEhx+h41 are all small. As expressed by 
Hauptman the relationship is that the cosine of the 
sum of the four phases is probably negative, which ex- 
plains Hauptman's terminology. 

The distribution of well-chosen negative quartets 
about n can be fairly tight and several hundred quartets 
may be available in a favourable case. It has been found 
by Hauptman that negative quartets can be used to 
establish a sensitive figure of merit for multisolution 
methods to distinguish the correct set of phases. This 
suggests that if they are actually used in the phase- 
determining process they may well be very discriminat- 
ing and favour the correct set of phases. 

Another possibility is the use of Sayre's equation 
directly to find phases. 

Sayre's equation for normalized structure factors 
may be written as 

Eh=Kh Z Eh,Eh-h,, (9) 
h" 

where Kh is a constant which may be readily deter- 
mined. 

Multiplying each side by the complex conjugate of 
Eh, E-h, gives 

IEhlZ=gh ~, E-hEh,Eh-h,, (10) 
h '  

an equation involving only structure-invariant quan- 
tities. 

At this point it may be as well to correct often-held 
misconceptions concerning Sayre's equation. One of 
these is that Sayre's equation involves the condition 

A C 31A - 1" 
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of non-negativity of electron density and the second 
is that Sayre's equation can only be applied to E's  if 
there is an infinity of data. In fact if the data con- 
sidered are E's  terminated by, say, the Cu Ka limiting 
sphere then these correspond to 'atoms' which are 
reasonably sharp but which have negative diffraction 
ripples. However peaks in an E map with all the data 
will be well resolved and there will be little overlap of 
neighbouring atoms. If the atoms are equal then the 
square of this density will also contain equal resolved 
peaks and this is the necessary and sufficient condition 
for Sayre's equation to be valid. The constant Kh is 
given by 

Kh=gh/fh 

where gh is the 'scattering-factor' for the squared 
'atom' and fh, the scattering factor for the original 
equal 'atoms' will equal N-1/2. The value ofgh is found 
as a self-convolution offh and is proportional to the 
over-lapped volume of two spheres, of radius equal to 
the limiting sphere, whose centres are at a distance 
apart equal to the distance of the point h from the 
origin of reciprocal space. 

Tests of Sayre's equation have shown that it applies 
reasonably well when restricted to a subset of the 
largest E 's  as long as a constant scaling factor is ap- 
plied which makes the aveiage magnitude of the right- 
hand sides of the equations equal to the average of the 
left-hand sides. 

Table 3. Residual of  scaled Sayre's equation for various 

IEImtn 
0-00 
1-00 
1 "25 
1"50 

IEI cut-off values 
N u m b e r  o f  
reflexions Residual 

940 0.060 
341 0-125 
209 0.169 
113 0.270 

The 'residual' for the two sides of the equations, 
properly scaled, for various values of the E cut-off are 
given in Table 3 for a trial 40-atom structure. 

The individual equations such as (10) can be written 
as a pair of equations 

IEhl2=K~ ~, IE~E~,Eh-h,I cos (~0~'+~'h-h'--~'h) (12a) 
h '  

and 

0=Kh ~ IEhEh,Eh-w[ sin (~0h'+~0h-h'--~0h) • (12b) 
h 

The ~0's in the equation may be expressed as linear 
combinations of a basis set of S's and a refinement of 
these S's can be based on obtaining equality on the 
two sides of equations such as (12a) and (12b). It is 
also possible to include Sayre's equations for which 
[Ehl =0,  a type of information which it is rarely pos- 
sible to use in phase determination. 

An investigation of the use of negative quartets and 
of Sayre's equation is currently being pursued. 
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